Optical Time Domain Reflectometer and its Functions

Optical Time Domain Reflectometer or OTDR is the most popular optical test instrument that is widely used world over by those in fiber optics. OTDR uses backscattering principle of light to measure the attenuation, length and point defects if any in an optical fiber link.

Installation staff uses optical time-domain reflectometry to characterize optical fiber and optical connection properties in the field. In optical time-domain reflectometry, an OTDR transmits an optical pulse through an installed optical fiber. The OTDR measures the fraction of light that is reflected back due to Rayleigh scattering and Fresnel reflection. By comparing the amount of light scattered back at different times, the OTDR can determine fiber and connection losses.

When several fibers are connected to form an installed cable plant, the OTDR can characterize optical fiber and optical connection properties along the entire length of the cable plant. A fiber optic cable plant consists of optical fiber cables, connectors, splices, mounting panels, jumper cables, and other passive components. A cable plant does not include active components such as optical transmitters or receivers.

The OTDR displays the backscattered and reflected optical signal as a function of length. The OTDR plots half the power in decibels (dB) versus half the distance. Plotting half the power in dB and half the distance corrects for round trip effects. By analyzing the OTDR plot, or trace, end users can measure fiber attenuation and transmission loss between any two points along the cable plant. End users can also measure insertion loss and reflectance of any optical connection. In addition, end users use the OTDR trace to locate fiber breaks or faults.

optical-time-domain-reflectometerOTDR traces can have several common characteristics. An OTDR trace begins with an initial input pulse. This pulse is a result of Fresnel reflection occurring at the connection to the OTDR. Following this pulse, the OTDR trace is a gradual down sloping curve interrupted by abrupt shifts. Periods of gradual decline in the OTDR trace result from Rayleigh scattering as light travels along each fiber section of the cable plant. Periods of gradual decline are interrupted by abrupt shifts called point defects.

A point defect is a temporary or permanent local deviation of the OTDR signal in the upward or downward direction. Point defects are caused by connectors, splices, or breaks along the fiber length. Point defects, or faults, can be reflective or nonreflective. An output pulse at the end of the OTDR trace indicates the end of the fiber cable plant. This output pulse results from Fresnel reflection occurring at the output fiber end face.



Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.